nodemail@0.1.8

Vulnerabilities

19 via 23 paths

Dependencies

46

Source

npm

Find, fix and prevent vulnerabilities in your code.

Severity
  • 4
  • 14
  • 1
Status
  • 19
  • 0
  • 0

high severity

Arbitrary Code Execution

  • Vulnerable module: ejs
  • Introduced through: ejs@0.8.8 and ejs-locals@0.2.6

Detailed paths

  • Introduced through: nodemail@0.1.8 ejs@0.8.8
    Remediation: Upgrade to ejs@2.5.3.
  • Introduced through: nodemail@0.1.8 ejs-locals@0.2.6 ejs@0.7.2

Overview

ejs is a popular JavaScript templating engine. Affected versions of the package are vulnerable to Remote Code Execution by letting the attacker under certain conditions control the source folder from which the engine renders include files. You can read more about this vulnerability on the Snyk blog.

There's also a Cross-site Scripting & Denial of Service vulnerabilities caused by the same behaviour.

Details

ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.

Both functions can be invoked in two ways. The first is calling them with template, data, and options:

ejs.render(str, data, options);

ejs.renderFile(filename, data, options, callback)

The second way would be by calling only the template and data, while ejs lets the options be passed as part of the data:

ejs.render(str, dataAndOptions);

ejs.renderFile(filename, dataAndOptions, callback)

If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the root option, which allows changing the project root for includes with an absolute path.

ejs.renderFile('my-template', {root:'/bad/root/'}, callback);

By passing along the root directive in the line above, any includes would now be pulled from /bad/root instead of the path intended. This allows the attacker to take control of the root directory for included scripts and divert it to a library under his control, thus leading to remote code execution.

The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.

Disclosure Timeline

  • November 27th, 2016 - Reported the issue to package owner.
  • November 27th, 2016 - Issue acknowledged by package owner.
  • November 28th, 2016 - Issue fixed and version 2.5.3 released.

Remediation

The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface. Otherwise, Upgrade ejs to version 2.5.3 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: mailparser
  • Introduced through: mailparser@0.2.33

Detailed paths

  • Introduced through: nodemail@0.1.8 mailparser@0.2.33
    Remediation: Upgrade to mailparser@2.3.0.

Overview

mailparser is an email parser.

Affected versions of this package are vulnerable to Denial of Service (DoS).

Overview

mailparser is an email parser.

Affected versions of this package are vulnerable to Denial of Service (DoS) attacks via a crafted email containing a few million multiparts.

MIME (Multipurpose Internet Mail Extentions) is an internet standard that extends the format of email to support: Non-ACSII character sets, non-text attachments, and more.

Most Node.js MIME decoders do not validate the number of multiparts they are willing to decode, allowing an attacker to send a crafted email containing a few million multiparts, which will then block the Node.js event loop for tens of seconds, explode RAM usage, and cause an out of memory crash.

Disclosure Timeline

  • April 23rd, 2018 - Initial private disclosure to package owner
  • April 24th, 2018 - Initial response from package owner
  • June 25th, 2018 - Public disclosure

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mailparser to version 2.3.0 or higher.

References

high severity

Command Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@0.3.44

Detailed paths

  • Introduced through: nodemail@0.1.8 nodemailer@0.3.44
    Remediation: Upgrade to nodemailer@6.4.16.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

PoC

-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)

Remediation

Upgrade nodemailer to version 6.4.16 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@3.22.1.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks. It used a regular expression in order to validate URLs.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Update to version 3.22.1 or greater.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: ejs
  • Introduced through: ejs@0.8.8 and ejs-locals@0.2.6

Detailed paths

  • Introduced through: nodemail@0.1.8 ejs@0.8.8
    Remediation: Upgrade to ejs@3.1.6.
  • Introduced through: nodemail@0.1.8 ejs-locals@0.2.6 ejs@0.7.2

Overview

ejs is a popular JavaScript templating engine.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the render and renderFile. If external input is flowing into the options parameter, an attacker is able run arbitrary code. This include the filename, compileDebug, and client option.

POC

let ejs = require('ejs')
ejs.render('./views/test.ejs',{
    filename:'/etc/passwd\nfinally { this.global.process.mainModule.require(\'child_process\').execSync(\'touch EJS_HACKED\') }',
    compileDebug: true,
    message: 'test',
    client: true
})

Remediation

Upgrade ejs to version 3.1.6 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: ejs
  • Introduced through: ejs@0.8.8 and ejs-locals@0.2.6

Detailed paths

  • Introduced through: nodemail@0.1.8 ejs@0.8.8
    Remediation: Upgrade to ejs@2.5.5.
  • Introduced through: nodemail@0.1.8 ejs-locals@0.2.6 ejs@0.7.2

Overview

ejs is a popular JavaScript templating engine. Affected versions of the package are vulnerable to Cross-site Scripting by letting the attacker under certain conditions control and override the filename option causing it to render the value as is, without escaping it. You can read more about this vulnerability on the Snyk blog.

There's also a Remote Code Execution & Denial of Service vulnerabilities caused by the same behaviour.

Details

ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.

Both functions can be invoked in two ways. The first is calling them with template, data, and options:

ejs.render(str, data, options);

ejs.renderFile(filename, data, options, callback)

The second way would be by calling only the template and data, while ejs lets the options be passed as part of the data:

ejs.render(str, dataAndOptions);

ejs.renderFile(filename, dataAndOptions, callback)

If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the filename option, which will be rendered as is when an error occurs during rendering.

ejs.renderFile('my-template', {filename:'<script>alert(1)</script>'}, callback);

The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.

Disclosure Timeline

  • November 28th, 2016 - Reported the issue to package owner.
  • November 28th, 2016 - Issue acknowledged by package owner.
  • December 06th, 2016 - Issue fixed and version 2.5.5 released.

Remediation

The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface. Otherwise, Upgrade ejs to version 2.5.5 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: ejs
  • Introduced through: ejs@0.8.8 and ejs-locals@0.2.6

Detailed paths

  • Introduced through: nodemail@0.1.8 ejs@0.8.8
    Remediation: Upgrade to ejs@2.5.5.
  • Introduced through: nodemail@0.1.8 ejs-locals@0.2.6 ejs@0.7.2

Overview

ejs is a popular JavaScript templating engine. Affected versions of the package are vulnerable to Denial of Service by letting the attacker under certain conditions control and override the localNames option causing it to crash. You can read more about this vulnerability on the Snyk blog.

There's also a Remote Code Execution & Cross-site Scripting vulnerabilities caused by the same behaviour.

Details

ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.

Both functions can be invoked in two ways. The first is calling them with template, data, and options:

ejs.render(str, data, options);

ejs.renderFile(filename, data, options, callback)

The second way would be by calling only the template and data, while ejs lets the options be passed as part of the data:

ejs.render(str, dataAndOptions);

ejs.renderFile(filename, dataAndOptions, callback)

If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the localNames option, which will cause the renderer to crash.

ejs.renderFile('my-template', {localNames:'try'}, callback);

The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.

Disclosure Timeline

  • November 28th, 2016 - Reported the issue to package owner.
  • November 28th, 2016 - Issue acknowledged by package owner.
  • December 06th, 2016 - Issue fixed and version 2.5.5 released.

Remediation

The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface. Otherwise, Upgrade ejs to version 2.5.5 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: markdown-it
  • Introduced through: markdown-js@0.0.4

Detailed paths

  • Introduced through: nodemail@0.1.8 markdown-js@0.0.4 markdown-it@8.4.1

Overview

markdown-it is a modern pluggable markdown parser.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). Parsing __*_… takes quadratic time, this could be a denial of service vulnerability in an application that parses user input.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade markdown-it to version 10.0.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: nodemailer@0.3.44

Detailed paths

  • Introduced through: nodemail@0.1.8 nodemailer@0.3.44 optimist@0.6.1 minimist@0.0.10

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.

PoC by Snyk

require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true

require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.1, 1.2.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@1.7.2

Detailed paths

  • Introduced through: nodemail@0.1.8 moment@1.7.2
    Remediation: Upgrade to moment@2.11.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

An attacker can provide a long value to the duration function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.11.2 or greater.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@1.7.2

Detailed paths

  • Introduced through: nodemail@0.1.8 moment@1.7.2
    Remediation: Upgrade to moment@2.15.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of the package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks for any locale that has separate format and standalone options and format input can be controlled by the user.

An attacker can provide a specially crafted input to the format function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).

Disclosure Timeline

  • October 19th, 2016 - Reported the issue to package owner.
  • October 19th, 2016 - Issue acknowledged by package owner.
  • October 24th, 2016 - Issue fixed and version 2.15.2 released.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

References

medium severity

Buffer Overflow

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@5.0.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Buffer Overflow. It used a regular expression (/^(?:[A-Z0-9+\/]{4})*(?:[A-Z0-9+\/]{2}==|[A-Z0-9+\/]{3}=|[A-Z0-9+\/]{4})$/i) in order to validate Base64 strings.

Remediation

Upgrade validator to version 5.0.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@2.0.0.

Overview

validator is a module for Node.js contains functionality meant to filter potential XSS attacks (a filter called xss). A method of bypassing the filter via an encoded URL has been publicly disclosed. In general, because the function’s filtering is blacklist-based it is likely that other bypasses will be discovered in the future. Developers are encouraged not to use the xss filter function in this package. The xss() function removes the word "javascript" when contained inside an attribute. However, it does not properly handle cases where characters have been hex-encoded. As a result, it is possible to build an input that bypasses the filter but which the browser will accept as valid JavaScript.

For example, browsers interpret abc as abc.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

ֿInjecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade to the latest version of this library. However, it should be noted that the fix for this vulnerability was to remove the xss filter functionality. Seek another library to provide proper output encoding.

References

-GitHub Issue

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@1.1.1.

Overview

The validator module for Node.js contains functionality meant to filter potential XSS attacks (a filter called xss). Several ways to bypass the filter were discovered. In general, because the function’s filtering is blacklist-based it is likely that other bypasses will be discovered in the future. Developers are encouraged not to use the xss filter function in this package.

Source: Node Security Project

Details

Various inputs that could bypass the filter were discovered:

Improper parsing of nested tags:

<s <onmouseover="alert(1)"> <;s onmouseover="alert(1)">This is a test</s>

Incomplete filtering of javascript: URIs:

<a href="javascriptJ a V a S c R iPt::alert(1)" "<s>">test</a>

UI Redressing:

<div style="z-index: 9999999; background-color: green; width: 100%; height: 100%">
<h1>You have won</h1>Please click the link and enter your login details:
<a href="http://example.com/">http://good.com</a>
</div>

Bypass via Nested Forbidden Strings:

<scrRedirecRedirect 302t 302ipt type="text/javascript">prompt(1);</scrRedirecRedirect 302t 302ipt>

Additional bypasses were discovered by Krzysztof Kotowicz in 2012 when auditing CodeIgniter's XSS filtering function, which this code was based off of.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

ֿInjecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

If you are a developer currently using the xss filter function from the validator package, you should consider replacing it with the escape filter function from the same package. This function replaces all instances of angle brackets (<, >), ampersands, and quotation marks, so no HTML tags will be processed.

References

medium severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@13.6.0.

Overview

validator is an A library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "111"
    for (var i = 0; i < n; i++) {
        ret += "a"
    }

    return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isSlug(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@13.6.0.

Overview

validator is an A library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the rtrim function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.rtrim(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@13.6.0.

Overview

validator is an A library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "hsla(0"
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isHSL(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@0.4.28

Detailed paths

  • Introduced through: nodemail@0.1.8 validator@0.4.28
    Remediation: Upgrade to validator@13.6.0.

Overview

validator is an A library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "<"
    }

    return ret+"";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        validator.isEmail(attack_str,{ allow_display_name: true })
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@1.7.2

Detailed paths

  • Introduced through: nodemail@0.1.8 moment@1.7.2
    Remediation: Upgrade to moment@2.19.3.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (/[0-9]*['a-z\u00A0-\u05FF\u0700-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF]+|[\u0600-\u06FF\/]+(\s*?[\u0600-\u06FF]+){1,2}/i) in order to parse dates specified as strings. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.19.3 or higher.

References